|
The Variational Bi-Complex for Systems of Semi-Linear Hyperbolic PDEs in Three Variables
Sara Froehlich Department of Mathematics and Statistics, McGill University, 805 Sherbrooke Street West, Montreal, QC H3A 0B9 Canada
Аннотация:
This paper extends, to a class of systems of semi-linear hyperbolic second order PDEs in three variables, the geometric study of a single nonlinear hyperbolic PDE in the plane as presented in [Anderson I.M., Kamran N., Duke Math. J. 87 (1997), 265–319]. The constrained variational bi-complex is introduced and used to define form-valued conservation laws. A method for generating conservation laws from solutions to the adjoint of the linearized system associated to a system of PDEs is given. Finally, Darboux integrability for a system of three equations is discussed and a method for generating infinitely many conservation laws for such systems is described.
Ключевые слова:
Laplace transform; conservation laws; Darboux integrable; variational bi-complex; hyperbolic second-order equations.
Поступила: 11 декабря 2017 г.; в окончательном варианте 24 августа 2018 г.; опубликована 9 сентября 2018 г.
Образец цитирования:
Sara Froehlich, “The Variational Bi-Complex for Systems of Semi-Linear Hyperbolic PDEs in Three Variables”, SIGMA, 14 (2018), 096, 49 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1395 https://www.mathnet.ru/rus/sigma/v14/p96
|
Статистика просмотров: |
Страница аннотации: | 259 | PDF полного текста: | 19 | Список литературы: | 19 |
|