Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



SIGMA:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Symmetry, Integrability and Geometry: Methods and Applications, 2018, том 14, 075, 20 стр.
DOI: https://doi.org/10.3842/SIGMA.2018.075
(Mi sigma1374)
 

Эта публикация цитируется в 5 научных статьях (всего в 5 статьях)

On Some Applications of Sakai's Geometric Theory of Discrete Painlevé Equations

Anton Dzhamaya, Tomoyuki Takenawab

a School of Mathematical Sciences, The University of Northern Colorado, Campus Box 122, 501 20th Street, Greeley, CO 80639, USA
b Faculty of Marine Technology, Tokyo University of Marine Science and Technology, 2-1-6 Etchujima, Koto-ku Tokyo, 135-8533, Japan
Список литературы:
Аннотация: Although the theory of discrete Painlevé (dP) equations is rather young, more and more examples of such equations appear in interesting and important applications. Thus, it is essential to be able to recognize these equations, to be able to identify their type, and to see where they belong in the classification scheme. The definite classification scheme for dP equations was proposed by H. Sakai, who used geometric ideas to identify 22 different classes of these equations. However, in a major contrast with the theory of ordinary differential Painlevé equations, there are infinitely many non-equivalent discrete equations in each class. Thus, there is no general form for a dP equation in each class, although some nice canonical examples in each equation class are known. The main objective of this paper is to illustrate that, in addition to providing the classification scheme, the geometric ideas of Sakai give us a powerful tool to study dP equations. We consider a very complicated example of a dP equation that describes a simple Schlesinger transformation of a Fuchsian system and we show how this equation can be identified with a much simpler canonical example of the dP equation of the same type and moreover, we give an explicit change of coordinates transforming one equation into the other. Among our main tools are the birational representation of the affine Weyl symmetry group of the equation and the period map. Even though we focus on a concrete example, the techniques that we use are general and can be easily adapted to other examples.
Ключевые слова: integrable systems; Painlevé equations; difference equations; isomonodromic transformations; birational transformations.
Финансовая поддержка Номер гранта
Japan Society for the Promotion of Science 17K05271
A.D.’s work was partly supported by the University of Northern Colorado 2015 Summer Support Initiative. T.T. was supported by the Japan Society for the Promotion of Science, Grand-inAid (C) (17K05271).
Поступила: 30 апреля 2018 г.; в окончательном варианте 14 июля 2018 г.; опубликована 21 июля 2018 г.
Реферативные базы данных:
Тип публикации: Статья
MSC: 34M55; 34M56; 14E07
Язык публикации: английский
Образец цитирования: Anton Dzhamay, Tomoyuki Takenawa, “On Some Applications of Sakai's Geometric Theory of Discrete Painlevé Equations”, SIGMA, 14 (2018), 075, 20 pp.
Цитирование в формате AMSBIB
\RBibitem{DzhTak18}
\by Anton~Dzhamay, Tomoyuki~Takenawa
\paper On Some Applications of Sakai's Geometric Theory of Discrete Painlev\'e Equations
\jour SIGMA
\yr 2018
\vol 14
\papernumber 075
\totalpages 20
\mathnet{http://mi.mathnet.ru/sigma1374}
\crossref{https://doi.org/10.3842/SIGMA.2018.075}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000439656200001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85051864728}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/sigma1374
  • https://www.mathnet.ru/rus/sigma/v14/p75
  • Эта публикация цитируется в следующих 5 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024