|
Эта публикация цитируется в 9 научных статьях (всего в 9 статьях)
Fuchsian Equations with Three Non-Apparent Singularities
Alexandre Eremenkoa, Vitaly Tarasovbc a Purdue University, West Lafayette, IN 47907, USA
b St. Petersburg Branch of Steklov Mathematical Institute, St. Petersburg, 191023, Russia
c Indiana University – Purdue University Indianapolis, Indianapolis, IN 46202, USA
Аннотация:
We show that for every second order Fuchsian linear differential equation $E$ with $n$ singularities of which $n-3$ are apparent there exists a hypergeometric equation $H$ and a linear differential operator with polynomial coefficients which maps the space of solutions of $H$ into the space of solutions of $E$. This map is surjective for generic parameters. This justifies one statement of Klein (1905). We also count the number of such equations $E$ with prescribed singularities and exponents. We apply these results to the description of conformal metrics of curvature $1$ on the punctured sphere with conic singularities, all but three of them having integer angles.
Ключевые слова:
Fuchsian equations; hypergeometric equation; difference equations; apparent singularities; bispectral duality; positive curvature; conic singularities.
Поступила: 2 февраля 2018 г.; в окончательном варианте 10 июня 2018 г.; опубликована 15 июня 2018 г.
Образец цитирования:
Alexandre Eremenko, Vitaly Tarasov, “Fuchsian Equations with Three Non-Apparent Singularities”, SIGMA, 14 (2018), 058, 12 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1357 https://www.mathnet.ru/rus/sigma/v14/p58
|
|