|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
Lower Bounds for Numbers of Real Self-Dual Spaces in Problems of Schubert Calculus
Kang Lu Department of Mathematical Sciences, Indiana University - Purdue University Indianapolis, 402 North Blackford St, Indianapolis, IN 46202-3216, USA
Аннотация:
The self-dual spaces of polynomials are related to Bethe vectors in the Gaudin model associated to the Lie algebras of types B and C. In this paper, we give lower bounds for the numbers of real self-dual spaces in intersections of Schubert varieties related to osculating flags in the Grassmannian. The higher Gaudin Hamiltonians are self-adjoint with respect to a nondegenerate indefinite Hermitian form. Our bound comes from the computation of the signature of this form.
Ключевые слова:
real Schubert calculus; self-dual spaces; Bethe ansatz; Gaudin model.
Поступила: 27 ноября 2017 г.; в окончательном варианте 7 мая 2018 г.; опубликована 14 мая 2018 г.
Образец цитирования:
Kang Lu, “Lower Bounds for Numbers of Real Self-Dual Spaces in Problems of Schubert Calculus”, SIGMA, 14 (2018), 046, 15 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1345 https://www.mathnet.ru/rus/sigma/v14/p46
|
|