Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



SIGMA:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Symmetry, Integrability and Geometry: Methods and Applications, 2018, том 14, 041, 18 стр.
DOI: https://doi.org/10.3842/SIGMA.2018.041
(Mi sigma1340)
 

Эта публикация цитируется в 4 научных статьях (всего в 4 статьях)

A Variational Principle for Discrete Integrable Systems

Sarah B. Lobba, Frank W. Nijhoffb

a NSW Department of Education, Sydney NSW 2000, Australia
b School of Mathematics, University of Leeds, Leeds LS2 9JT, UK
Список литературы:
Аннотация: For integrable systems in the sense of multidimensional consistency (MDC) we can consider the Lagrangian as a form, which is closed on solutions of the equations of motion. For 2-dimensional systems, described by partial difference equations with two independent variables, MDC allows us to define an action on arbitrary 2-dimensional surfaces embedded in a higher dimensional space of independent variables, where the action is not only a functional of the field variables but also the choice of surface. It is then natural to propose that the system should be derived from a variational principle which includes not only variations with respect to the dependent variables, but also with respect to variations of the surface in the space of independent variables. Here we derive the resulting system of generalized Euler–Lagrange equations arising from that principle. We treat the case where the equations are 2 dimensional (but which due to MDC can be consistently embedded in higher-dimensional space), and show that they can be integrated to yield relations of quadrilateral type. We also derive the extended set of Euler–Lagrange equations for 3-dimensional systems, i.e., those for equations with 3 independent variables. The emerging point of view from this study is that the variational principle can be considered as the set of equations not only encoding the equations of motion but as the defining equations for the Lagrangians themselves.
Ключевые слова: variational calculus; Lagrangian multiforms; discrete integrable systems.
Финансовая поддержка Номер гранта
Australian Research Council FL120100094
Engineering and Physical Sciences Research Council EP/I038683/1
At the time of writing SL was supported by the Australian Laureate Fellowship Grant #FL120100094 from the Australian Research Council. FN was partially supported by the grant EP/I038683/1 of the Engineering and Physical Sciences Research Council (EPSRC).
Поступила: 1 апреля 2017 г.; в окончательном варианте 26 апреля 2018 г.; опубликована 3 мая 2018 г.
Реферативные базы данных:
Тип публикации: Статья
Язык публикации: английский
Образец цитирования: Sarah B. Lobb, Frank W. Nijhoff, “A Variational Principle for Discrete Integrable Systems”, SIGMA, 14 (2018), 041, 18 pp.
Цитирование в формате AMSBIB
\RBibitem{LobNij18}
\by Sarah~B.~Lobb, Frank~W.~Nijhoff
\paper A Variational Principle for Discrete Integrable Systems
\jour SIGMA
\yr 2018
\vol 14
\papernumber 041
\totalpages 18
\mathnet{http://mi.mathnet.ru/sigma1340}
\crossref{https://doi.org/10.3842/SIGMA.2018.041}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000431681300001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85046548619}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/sigma1340
  • https://www.mathnet.ru/rus/sigma/v14/p41
  • Эта публикация цитируется в следующих 4 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Статистика просмотров:
    Страница аннотации:145
    PDF полного текста:38
    Список литературы:28
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024