|
Эта публикация цитируется в 3 научных статьях (всего в 3 статьях)
Evolutionary Hirota Type $(2+1)$-Dimensional Equations: Lax Pairs, Recursion Operators and Bi-Hamiltonian Structures
Mikhail B. Sheftela, Devrim Yazicib a Department of Physics, Boğaziçi University, Bebek, 34342 Istanbul, Turkey
b Department of Physics, Yıldız Technical University, Esenler, 34220 Istanbul, Turkey
Аннотация:
We show that evolutionary Hirota type Euler–Lagrange equations in $(2+1)$ dimensions have a symplectic Monge–Ampère form.
We consider integrable equations of this type in the sense that they admit infinitely many hydrodynamic reductions and determine Lax pairs for them. For two seven-parameter families of integrable equations converted to two-component form we have constructed Lagrangians, recursion operators and bi-Hamiltonian representations. We have also presented a six-parameter family of tri-Hamiltonian systems.
Ключевые слова:
Lax pair; recursion operator; Hamiltonian operator; bi-Hamiltonian system.
Поступила: 6 декабря 2017 г.; в окончательном варианте 2 марта 2018 г.; опубликована 7 марта 2018 г.
Образец цитирования:
Mikhail B. Sheftel, Devrim Yazici, “Evolutionary Hirota Type $(2+1)$-Dimensional Equations: Lax Pairs, Recursion Operators and Bi-Hamiltonian Structures”, SIGMA, 14 (2018), 017, 19 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1316 https://www.mathnet.ru/rus/sigma/v14/p17
|
|