|
Эта публикация цитируется в 3 научных статьях (всего в 3 статьях)
Classifying Toric and Semitoric Fans by Lifting Equations from $\mathrm{SL}_2({\mathbb Z})$
Daniel M. Kane, Joseph Palmer, Álvaro Pelayo University of California, San Diego, Department of Mathematics, 9500 Gilman Drive #0112, La Jolla, CA 92093-0112, USA
Аннотация:
We present an algebraic method to study four-dimensional toric varieties by lifting matrix equations from the special linear group $\mathrm{SL}_2(\mathbb{Z})$ to its preimage in the universal cover of $\mathrm{SL}_2(\mathbb{R})$. With this method we recover the classification of two-dimensional toric fans, and obtain a description of their semitoric analogue. As an application to symplectic geometry of Hamiltonian systems, we give a concise proof of the connectivity of the moduli space of toric integrable systems in dimension four, recovering a known result, and extend it to the case of semitoric integrable systems with a fixed number of focus-focus points and which are in the same twisting index class. In particular, we show that any semitoric system with precisely one focus-focus singular point can be continuously deformed into a system in the same isomorphism class as the Jaynes–Cummings model from optics.
Ключевые слова:
symplectic geometry; integrable system; semitoric integrable systems; toric integrable systems; focus-focus singularities; $\mathrm{SL}_2(\mathbb{Z})$.
Поступила: 17 апреля 2017 г.; в окончательном варианте 13 февраля 2018 г.; опубликована 22 февраля 2018 г.
Образец цитирования:
Daniel M. Kane, Joseph Palmer, Álvaro Pelayo, “Classifying Toric and Semitoric Fans by Lifting Equations from $\mathrm{SL}_2({\mathbb Z})$”, SIGMA, 14 (2018), 016, 43 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1315 https://www.mathnet.ru/rus/sigma/v14/p16
|
|