|
Эта публикация цитируется в 4 научных статьях (всего в 4 статьях)
$k$-Dirac Complexes
Tomáš Salač Mathematical Institute, Charles University, Sokolovská 49/83, Prague, Czech Republic
Аннотация:
This is the first paper in a series of two papers. In this paper we construct complexes of invariant differential operators which live on homogeneous spaces of $|2|$-graded parabolic geometries of some particular type. We call them $k$-Dirac complexes. More explicitly, we will show that each $k$-Dirac complex arises as the direct image of a relative BGG sequence and so this fits into the scheme of the Penrose transform. We will also prove that each $k$-Dirac complex is formally exact, i.e., it induces a long exact sequence of infinite (weighted) jets at any fixed point. In the second part of the series we use this information to show that each $k$-Dirac complex is exact at the level of formal power series at any point and that it descends to a resolution of the $k$-Dirac operator studied in Clifford analysis.
Ключевые слова:
Penrose transform; complexes of invariant differential operators; relative BGG complexes; formal exactness; weighted jets.
Поступила: 1 июня 2017 г.; в окончательном варианте 6 февраля 2018 г.; опубликована 16 февраля 2018 г.
Образец цитирования:
Tomáš Salač, “$k$-Dirac Complexes”, SIGMA, 14 (2018), 012, 33 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1311 https://www.mathnet.ru/rus/sigma/v14/p12
|
Статистика просмотров: |
Страница аннотации: | 209 | PDF полного текста: | 41 | Список литературы: | 28 |
|