|
Эта публикация цитируется в 9 научных статьях (всего в 9 статьях)
Topology of Functions with Isolated Critical Points on the Boundary of a 2-Dimensional Manifold
Bohdana I. Hladysh, Aleksandr O. Prishlyak Faculty of Mechanics and Mathematics, Taras Shevchenko National University of Kyiv, 4-e Akademika Glushkova Ave., Kyiv, 03127, Ukraine
Аннотация:
This paper focuses on the problem of topological equivalence of functions with isolated critical points on the boundary of a compact surface $M$ which are also isolated critical points of their restrictions to the boundary. This class of functions we denote by $\Omega(M)$. Firstly, we've obtained the topological classification of above-mentioned functions in some neighborhood of their critical points. Secondly, we've constructed a chord diagram from the neighborhood of a critical level. Also the minimum number of critical points of such functions is being considered. And finally, the criterion of global topological equivalence of functions which belong to $\Omega(M)$ and have three critical points has been developed.
Ключевые слова:
topological classification; isolated boundary critical point; optimal function; chord diagram.
Поступила: 18 ноября 2016 г.; в окончательном варианте 16 июня 2017 г.; опубликована 1 июля 2017 г.
Образец цитирования:
Bohdana I. Hladysh, Aleksandr O. Prishlyak, “Topology of Functions with Isolated Critical Points on the Boundary of a 2-Dimensional Manifold”, SIGMA, 13 (2017), 050, 17 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1250 https://www.mathnet.ru/rus/sigma/v13/p50
|
Статистика просмотров: |
Страница аннотации: | 144 | PDF полного текста: | 37 | Список литературы: | 28 |
|