|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
Connected Lie Groupoids are Internally Connected and Integral Complete in Synthetic Differential Geometry
Matthew Burke 4 River Court, Ferry Lane, Cambridge CB4 1NU, UK
Аннотация:
We extend some fundamental definitions and constructions in the established generalisation of Lie theory involving Lie groupoids by reformulating them in terms of groupoids internal to a well-adapted model of synthetic differential geometry. In particular we define internal counterparts of the definitions of source path and source simply connected groupoid and the integration of $A$-paths. The main results of this paper show that if a classical Hausdorff Lie groupoid satisfies one of the classical connectedness conditions it also satisfies its internal counterpart.
Ключевые слова:
Lie theory; Lie groupoid; Lie algebroid; category theory; synthetic differential geometry; intuitionistic logic.
Поступила: 29 июня 2016 г.; в окончательном варианте 13 января 2017 г.; опубликована 24 января 2017 г.
Образец цитирования:
Matthew Burke, “Connected Lie Groupoids are Internally Connected and Integral Complete in Synthetic Differential Geometry”, SIGMA, 13 (2017), 007, 25 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1207 https://www.mathnet.ru/rus/sigma/v13/p7
|
Статистика просмотров: |
Страница аннотации: | 142 | PDF полного текста: | 36 | Список литературы: | 31 |
|