|
Эта публикация цитируется в 4 научных статьях (всего в 4 статьях)
Cartan Connections on Lie Groupoids and their Integrability
Anthony D. Blaom 10 Huruhi Road, Waiheke Island, New Zealand
Аннотация:
A multiplicatively closed, horizontal $n$-plane field $D$ on a Lie groupoid $G$ over $M$ generalizes to intransitive geometry the classical notion of a Cartan connection. The infinitesimalization of the connection $D$ is a Cartan connection $\nabla $ on the Lie algebroid of $G$, a notion already studied elsewhere by the author. It is shown that $\nabla $ may be regarded as infinitesimal parallel translation in the groupoid $G$ along $D$. From this follows a proof that $D$ defines a pseudoaction generating a pseudogroup of transformations on $M$ precisely when the curvature of $\nabla $ vanishes. A byproduct of this analysis is a detailed description of multiplication in the groupoid $J^1 G$ of one-jets of bisections of $G$.
Ключевые слова:
Cartan connection; Lie algebroid; Lie groupoid.
Поступила: 19 мая 2016 г.; в окончательном варианте 2 декабря 2016 г.; опубликована 7 декабря 2016 г.
Образец цитирования:
Anthony D. Blaom, “Cartan Connections on Lie Groupoids and their Integrability”, SIGMA, 12 (2016), 114, 26 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1196 https://www.mathnet.ru/rus/sigma/v12/p114
|
|