|
Эта публикация цитируется в 4 научных статьях (всего в 4 статьях)
On Harmonic Analysis Operators in Laguerre–Dunkl and Laguerre-Symmetrized Settings
Adam Nowaka, Krzysztof Stempakb, Tomasz Z. Szareka a Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00–656 Warszawa, Poland
b Faculty of Pure and Applied Mathematics, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50–370 Wrocław, Poland
Аннотация:
We study several fundamental harmonic analysis operators in the multi-dimensional context of the Dunkl harmonic oscillator and the underlying group of reflections isomorphic to $\mathbb{Z}_2^d$. Noteworthy, we admit negative values of the multiplicity functions. Our investigations include maximal operators, $g$-functions, Lusin area integrals, Riesz transforms and multipliers of Laplace and Laplace–Stieltjes type. By means of the general Calderón–Zygmund theory we prove that these operators are bounded on weighted $L^p$ spaces, $1 < p < \infty$, and from weighted $L^1$ to weighted weak $L^1$. We also obtain similar results for analogous set of operators in the closely related multi-dimensional Laguerre-symmetrized framework. The latter emerges from a symmetrization procedure proposed recently by the first two authors. As a by-product of the main developments we get some new results in the multi-dimensional Laguerre function setting of convolution type.
Ключевые слова:
Dunkl harmonic oscillator; generalized Hermite functions; negative multiplicity function; Laguerre expansions of convolution type; Bessel harmonic oscillator; Laguerre–Dunkl expansions; Laguerre-symmetrized expansions; heat semigroup; Poisson semigroup; maximal operator; Riesz transform; $g$-function; spectral multiplier; area integral; Calderón–Zygmund operator.
Поступила: 25 мая 2016 г.; в окончательном варианте 23 сентября 2016 г.; опубликована 29 сентября 2016 г.
Образец цитирования:
Adam Nowak, Krzysztof Stempak, Tomasz Z. Szarek, “On Harmonic Analysis Operators in Laguerre–Dunkl and Laguerre-Symmetrized Settings”, SIGMA, 12 (2016), 096, 39 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1178 https://www.mathnet.ru/rus/sigma/v12/p96
|
Статистика просмотров: |
Страница аннотации: | 565 | PDF полного текста: | 43 | Список литературы: | 37 |
|