Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



SIGMA:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Symmetry, Integrability and Geometry: Methods and Applications, 2016, том 12, 091, 17 стр.
DOI: https://doi.org/10.3842/SIGMA.2016.091
(Mi sigma1173)
 

Эта публикация цитируется в 9 научных статьях (всего в 9 статьях)

Recursion Operators and Tri-Hamiltonian Structure of the First Heavenly Equation of Plebański

Mikhail B. Sheftela, Devrim Yazicib

a Department of Physics, Boğaziçi University, Bebek, 34342 Istanbul, Turkey
b Department of Physics, Yıldız Technical University, Esenler, 34220 Istanbul, Turkey
Список литературы:
Аннотация: We present first heavenly equation of Plebański in a two-component evolutionary form and obtain Lagrangian and Hamiltonian representations of this system. We study all point symmetries of the two-component system and, using the inverse Noether theorem in the Hamiltonian form, obtain all the integrals of motion corresponding to each variational (Noether) symmetry. We derive two linearly independent recursion operators for symmetries of this system related by a discrete symmetry of both the two-component system and its symmetry condition. Acting by these operators on the first Hamiltonian operator $J_0$ we obtain second and third Hamiltonian operators. However, we were not able to find Hamiltonian densities corresponding to the latter two operators. Therefore, we construct two recursion operators, which are either even or odd, respectively, under the above-mentioned discrete symmetry. Acting with them on $J_0$, we generate another two Hamiltonian operators $J_+$ and $J_-$ and find the corresponding Hamiltonian densities, thus obtaining second and third Hamiltonian representations for the first heavenly equation in a two-component form. Using P. Olver's theory of the functional multi-vectors, we check that the linear combination of $J_0$$J_+$ and $J_-$ with arbitrary constant coefficients satisfies Jacobi identities. Since their skew symmetry is obvious, these three operators are compatible Hamiltonian operators and hence we obtain a tri-Hamiltonian representation of the first heavenly equation. Our well-founded conjecture applied here is that P. Olver's method works fine for nonlocal operators and our proof of the Jacobi identities and bi-Hamiltonian structures crucially depends on the validity of this conjecture.
Ключевые слова: first heavenly equation; Lax pair; recursion operator; Hamiltonian operator; Jacobi identities; variational symmetry.
Финансовая поддержка Номер гранта
Boğazi&#ccedil;i University Scientific Research Fund (BAP) 11643
The research of M.B. Sheftel is partly supported by the research grant from Boğazi&#ccedil;i University Scientific Research Fund (BAP), research project No. 11643.
Поступила: 28 июня 2016 г.; в окончательном варианте 10 сентября 2016 г.; опубликована 14 сентября 2016 г.
Реферативные базы данных:
Тип публикации: Статья
Язык публикации: английский
Образец цитирования: Mikhail B. Sheftel, Devrim Yazici, “Recursion Operators and Tri-Hamiltonian Structure of the First Heavenly Equation of Plebański”, SIGMA, 12 (2016), 091, 17 pp.
Цитирование в формате AMSBIB
\RBibitem{SheYaz16}
\by Mikhail~B.~Sheftel, Devrim~Yazici
\paper Recursion Operators and Tri-Hamiltonian Structure of the First Heavenly Equation of Pleba\'nski
\jour SIGMA
\yr 2016
\vol 12
\papernumber 091
\totalpages 17
\mathnet{http://mi.mathnet.ru/sigma1173}
\crossref{https://doi.org/10.3842/SIGMA.2016.091}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000383278300001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84987704162}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/sigma1173
  • https://www.mathnet.ru/rus/sigma/v12/p91
  • Эта публикация цитируется в следующих 9 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024