|
A Duflo Star Product for Poisson Groups
Adrien Brochier MPIM Bonn, Germany
Аннотация:
Let $G$ be a finite-dimensional Poisson algebraic, Lie or formal group. We show that the center of the quantization of $G$ provided by an Etingof–Kazhdan functor is isomorphic as an algebra to the Poisson center of the algebra of functions on $G$. This recovers and generalizes Duflo's theorem which gives an isomorphism between the center of the enveloping algebra of a finite-dimensional Lie algebra $\mathfrak{a}$ and the subalgebra of ad-invariant in the symmetric algebra of $\mathfrak{a}$. As our proof relies on Etingof–Kazhdan construction it ultimately depends on the existence of Drinfeld associators, but otherwise it is a fairly simple application of graphical calculus. This shed some lights on Alekseev–Torossian proof of the Kashiwara–Vergne conjecture, and on the relation observed by Bar-Natan–Le–Thurston between the Duflo isomorphism and the Kontsevich integral of the unknot.
Ключевые слова:
quantum groups; knot theory; Duflo isomorphism.
Поступила: 18 мая 2016 г.; в окончательном варианте 5 сентября 2016 г.; опубликована 8 сентября 2016 г.
Образец цитирования:
Adrien Brochier, “A Duflo Star Product for Poisson Groups”, SIGMA, 12 (2016), 088, 12 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1170 https://www.mathnet.ru/rus/sigma/v12/p88
|
Статистика просмотров: |
Страница аннотации: | 122 | PDF полного текста: | 37 | Список литературы: | 28 |
|