|
Эта публикация цитируется в 13 научных статьях (всего в 13 статьях)
An Update on Local Universality Limits for Correlation Functions Generated by Unitary Ensembles
Doron S. Lubinsky School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332-0160 USA
Аннотация:
We survey the current status of universality limits for $m$-point correlation functions in the bulk and at the edge for unitary ensembles, primarily when the limiting kernels are Airy, Bessel, or Sine kernels. In particular, we consider underlying measures on compact intervals, and fixed and varying exponential weights, as well as universality limits for a variety of orthogonal systems. The scope of the survey is quite narrow: we do not consider $\beta$ ensembles for $\beta \neq 2$, nor general Hermitian matrices with independent entries, let alone more general settings. We include some open problems.
Ключевые слова:
orthogonal polynomials; random matrices; unitary ensembles; correlation functions; Christoffel functions.
Поступила: 5 апреля 2016 г.; в окончательном варианте 5 августа 2016 г.; опубликована 10 августа 2016 г.
Образец цитирования:
Doron S. Lubinsky, “An Update on Local Universality Limits for Correlation Functions Generated by Unitary Ensembles”, SIGMA, 12 (2016), 078, 36 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1160 https://www.mathnet.ru/rus/sigma/v12/p78
|
|