|
Эта публикация цитируется в 4 научных статьях (всего в 4 статьях)
Hypergeometric Orthogonal Polynomials with respect to Newtonian Bases
Luc Vineta, Alexei Zhedanovb a Centre de recherches mathématiques, Université de Montréal, P.O. Box 6128, Centre-ville Station, Montréal (Québec), H3C 3J7 Canada
b Institute for Physics and Technology, 83114 Donetsk, Ukraine
Аннотация:
We introduce the notion of “hypergeometric” polynomials with respect to Newtonian bases. These polynomials are eigenfunctions ($L P_n(x) = \lambda_n P_n(x)$) of some abstract operator $L$ which is 2-diagonal in the Newtonian basis $\varphi_n(x)$: $L \varphi_n(x) = \lambda_n \varphi_n(x) + \tau_n(x) \varphi_{n-1}(x)$ with some coefficients $\lambda_n$, $\tau_n$. We find the necessary and sufficient conditions for the polynomials $P_n(x)$ to be orthogonal. For the special cases where the sets $\lambda_n$ correspond to the classical grids, we find the complete solution to these conditions and observe that it leads to the most general Askey–Wilson polynomials and their special and degenerate classes.
Ключевые слова:
abstract hypergeometric operator; orthogonal polynomials; classical orthogonal polynomials.
Поступила: 8 февраля 2016 г.; в окончательном варианте 7 мая 2016 г.; опубликована 14 мая 2016 г.
Образец цитирования:
Luc Vinet, Alexei Zhedanov, “Hypergeometric Orthogonal Polynomials with respect to Newtonian Bases”, SIGMA, 12 (2016), 048, 14 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1130 https://www.mathnet.ru/rus/sigma/v12/p48
|
|