|
Эта публикация цитируется в 5 научных статьях (всего в 5 статьях)
Flat $(2,3,5)$-Distributions and Chazy's Equations
Matthew Randall Department of Mathematics and Statistics, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
Аннотация:
In the geometry of generic 2-plane fields on 5-manifolds, the local equivalence problem was solved by Cartan who also constructed the fundamental curvature invariant. For generic 2-plane fields or $(2,3,5)$-distributions determined by a single function of the form $F(q)$, the vanishing condition for the curvature invariant is given by a 6$^{\rm th}$ order nonlinear ODE. Furthermore, An and Nurowski showed that this ODE is the Legendre transform of the 7$^{\rm th}$ order nonlinear ODE described in Dunajski and Sokolov. We show that the 6$^{\rm th}$ order ODE can be reduced to a 3$^{\rm rd}$ order nonlinear ODE that is a generalised Chazy equation. The 7$^{\rm th}$ order ODE can similarly be reduced to another generalised Chazy equation, which has its Chazy parameter given by the reciprocal of the former. As a consequence of solving the related generalised Chazy equations, we obtain additional examples of flat $(2,3,5)$-distributions not of the form $F(q)=q^m$. We also give 4-dimensional split signature metrics where their twistor distributions via the An–Nurowski construction have split $G_2$ as their group of symmetries.
Ключевые слова:
generic rank two distribution in dimension five; conformal geometry; Chazy's equations.
Поступила: 23 сентября 2015 г.; в окончательном варианте 14 марта 2016 г.; опубликована 18 марта 2016 г.
Образец цитирования:
Matthew Randall, “Flat $(2,3,5)$-Distributions and Chazy's Equations”, SIGMA, 12 (2016), 029, 28 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1111 https://www.mathnet.ru/rus/sigma/v12/p29
|
Статистика просмотров: |
Страница аннотации: | 263 | PDF полного текста: | 33 | Список литературы: | 53 |
|