|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
Fermion on Curved Spaces, Symmetries, and Quantum Anomalies
Mihai Visinescu Department of Theoretical Physics, Institute for Physics and Nuclear Engineering, Magurele, P.O.Box MG-6, Bucharest, Romania
Аннотация:
We review the geodesic motion of pseudo-classical spinning particles in curved spaces. Investigating the generalized Killing equations for spinning spaces, we express the constants of motion in terms of Killing–Yano tensors. Passing from the spinning spaces to the Dirac equation in curved backgrounds we point out the role of the Killing–Yano tensors in the construction of the Dirac-type operators. The general results are applied to the case of the four-dimensional Euclidean Taub–Newman–Unti–Tamburino space. The gravitational and axial
anomalies are studied for generalized Euclidean Taub-NUT metrics which admit hidden symmetries analogous to the Runge–Lenz vector of the Kepler-type problem. Using the Atiyah–Patodi–Singer index theorem for manifolds with boundaries, it is shown that the these metrics make no contribution to the axial anomaly.
Ключевые слова:
spinning particles; Dirac type operators; gravitational anomalies; axial anomalies.
Поступила: 28 сентября 2006 г.; в окончательном варианте 21 ноября 2006 г.; опубликована 29 ноября 2006 г.
Образец цитирования:
Mihai Visinescu, “Fermion on Curved Spaces, Symmetries, and Quantum Anomalies”, SIGMA, 2 (2006), 083, 16 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma111 https://www.mathnet.ru/rus/sigma/v2/p83
|
Статистика просмотров: |
Страница аннотации: | 178 | PDF полного текста: | 46 | Список литературы: | 41 |
|