|
Эта публикация цитируется в 5 научных статьях (всего в 5 статьях)
The Third, Fifth and Sixth Painlevé Equations on Weighted Projective Spaces
Hayato Chiba Institute of Mathematics for Industry, Kyushu University, Fukuoka, 819-0395, Japan
Аннотация:
The third, fifth and sixth Painlevé equations are studied by means of the weighted projective spaces $\mathbb C P^3(p,q,r,s)$ with suitable weights $(p,q,r,s)$ determined by the Newton polyhedrons of the equations. Singular normal forms of the equations, symplectic atlases of the spaces of initial conditions, Riccati solutions and Boutroux's coordinates are systematically studied in a unified way with the aid of the orbifold structure of $\mathbb C P^3(p,q,r,s)$ and dynamical systems theory.
Ключевые слова:
Painlevé equations; weighted projective space.
Поступила: 17 сентября 2015 г.; в окончательном варианте 18 февраля 2016 г.; опубликована 23 февраля 2016 г.
Образец цитирования:
Hayato Chiba, “The Third, Fifth and Sixth Painlevé Equations on Weighted Projective Spaces”, SIGMA, 12 (2016), 019, 22 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1101 https://www.mathnet.ru/rus/sigma/v12/p19
|
|