|
Эта публикация цитируется в 4 научных статьях (всего в 4 статьях)
Weighted Tensor Products of Joyal Species, Graphs, and Charades
Ross Street Centre of Australian Category Theory, Macquarie University, Australia
Аннотация:
Motivated by the weighted Hurwitz product on sequences in an algebra, we produce a family of monoidal structures on the category of Joyal species. We suggest a family of tensor products for charades. We begin by seeing weighted derivational algebras and weighted Rota–Baxter algebras as special monoids and special semigroups, respectively, for the same monoidal structure on the category of graphs in a monoidal additive category. Weighted derivations are lifted to the categorical level.
Ключевые слова:
weighted derivation; Hurwitz series; monoidal category; Joyal species; convolution; Rota–Baxter operator.
Поступила: 18 августа 2015 г.; в окончательном варианте 14 января 2016 г.; опубликована 17 января 2016 г.
Образец цитирования:
Ross Street, “Weighted Tensor Products of Joyal Species, Graphs, and Charades”, SIGMA, 12 (2016), 005, 20 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1087 https://www.mathnet.ru/rus/sigma/v12/p5
|
Статистика просмотров: |
Страница аннотации: | 129 | PDF полного текста: | 42 | Список литературы: | 78 |
|