|
Эта публикация цитируется в 12 научных статьях (всего в 12 статьях)
On Some Quadratic Algebras I $\frac{1}{2}$: Combinatorics of Dunkl and Gaudin Elements, Schubert, Grothendieck, Fuss–Catalan, Universal Tutte and Reduced Polynomials
Anatol N. Kirillovabc a Research Institute of Mathematical Sciences (RIMS), Kyoto, Sakyo-ku 606-8502, Japan
b The Kavli Institute for the Physics and Mathematics of the Universe (IPMU), 5-1-5 Kashiwanoha, Kashiwa, 277-8583, Japan
c Department of Mathematics, National Research University Higher School of Economics, 7 Vavilova Str., 117312, Moscow, Russia
Аннотация:
We study some combinatorial and algebraic properties of certain quadratic algebras related with dynamical classical and classical Yang–Baxter equations.
Ключевые слова:
braid and Yang–Baxter groups; classical and dynamical Yang–Baxter relations; classical Yang–Baxter, Kohno–Drinfeld and $3$-term relations algebras; Dunkl, Gaudin and Jucys–Murphy elements; small quantum cohomology and $K$-theory of flag varieties; Pieri rules; Schubert, Grothendieck, Schröder, Ehrhart, Chromatic, Tutte and Betti polynomials; reduced polynomials; Chan–Robbins–Yuen polytope; $k$-dissections of a convex $(n+k+1)$-gon, Lagrange inversion formula and Richardson permutations; multiparameter deformations of Fuss–Catalan and Schröder polynomials; Motzkin, Riordan, Fine, poly-Bernoulli and Stirling numbers; Euler numbers and Brauer algebras; VSASM and CSTCPP; Birman–Ko–Lee monoid; Kronecker elliptic sigma functions.
Поступила: 23 марта 2015 г.; в окончательном варианте 27 декабря 2015 г.; опубликована 5 января 2016 г.
Образец цитирования:
Anatol N. Kirillov, “On Some Quadratic Algebras I $\frac{1}{2}$: Combinatorics of Dunkl and Gaudin Elements, Schubert, Grothendieck, Fuss–Catalan, Universal Tutte and Reduced Polynomials”, SIGMA, 12 (2016), 002, 172 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1084 https://www.mathnet.ru/rus/sigma/v12/p2
|
|