|
Эта публикация цитируется в 4 научных статьях (всего в 4 статьях)
Uniform Asymptotics of Orthogonal Polynomials Arising from Coherent States
Dan Daia, Weiying Hua, Xiang-Sheng Wangb a Department of Mathematics, City University of Hong Kong, Hong Kong
b Department of Mathematics, Southeast Missouri State University,
Cape Girardeau, MO 63701, USA
Аннотация:
In this paper, we study a family of orthogonal polynomials $\{\phi_n(z)\}$ arising from nonlinear coherent states in quantum optics. Based on the three-term recurrence relation only, we obtain a uniform asymptotic expansion of $\phi_n(z)$ as the polynomial degree $n$ tends to infinity. Our asymptotic results suggest that the weight function associated with the polynomials has an unusual singularity, which has never appeared for orthogonal polynomials in the Askey scheme. Our main technique is the Wang and Wong's difference equation method. In addition, the limiting zero distribution of the polynomials $\phi_n(z)$ is provided.
Ключевые слова:
uniform asymptotics; orthogonal polynomials; coherent states; three-term recurrence relation.
Поступила: 1 апреля 2015 г.; в окончательном варианте 25 августа 2015 г.; опубликована 31 августа 2015 г.
Образец цитирования:
Dan Dai, Weiying Hu, Xiang-Sheng Wang, “Uniform Asymptotics of Orthogonal Polynomials Arising from Coherent States”, SIGMA, 11 (2015), 070, 17 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1051 https://www.mathnet.ru/rus/sigma/v11/p70
|
|