|
Constructing Involutive Tableaux with Guillemin Normal Form
Abraham D. Smith Department of Mathematics, Statistics and Computer Science, University of Wisconsin-Stout, Menomonie, WI 54751-2506, USA
Аннотация:
Involutivity is the algebraic property that guarantees solutions to an analytic and torsion-free exterior differential system or partial differential equation via the Cartan–Kähler theorem. Guillemin normal form establishes that the prolonged symbol of an involutive system admits a commutativity property on certain subspaces of the prolonged tableau. This article examines Guillemin normal form in detail, aiming at a more systematic approach to classifying involutive systems. The main result is an explicit quadratic condition for involutivity of the type suggested but not completed in Chapter IV, § 5 of the book Exterior Differential Systems by Bryant, Chern, Gardner, Goldschmidt, and Griffiths. This condition enhances Guillemin normal form and characterizes involutive tableaux.
Ключевые слова:
involutivity; tableau; symbol; exterior differential systems.
Поступила: 15 декабря 2014 г.; в окончательном варианте 1 июля 2015 г.; опубликована 9 июля 2015 г.
Образец цитирования:
Abraham D. Smith, “Constructing Involutive Tableaux with Guillemin Normal Form”, SIGMA, 11 (2015), 053, 14 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1034 https://www.mathnet.ru/rus/sigma/v11/p53
|
Статистика просмотров: |
Страница аннотации: | 130 | PDF полного текста: | 28 | Список литературы: | 27 |
|