Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



SIGMA:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Symmetry, Integrability and Geometry: Methods and Applications, 2015, том 11, 024, 30 стр.
DOI: https://doi.org/10.3842/SIGMA.2015.024
(Mi sigma1005)
 

Эта публикация цитируется в 6 научных статьях (всего в 6 статьях)

The Feigin Tetrahedron

Dylan Rupel

Department of Mathematics, Northeastern University, Boston, MA 02115, USA
Список литературы:
Аннотация: The first goal of this note is to extend the well-known Feigin homomorphisms taking quantum groups to quantum polynomial algebras. More precisely, we define generalized Feigin homomorphisms from a quantum shuffle algebra to quantum polynomial algebras which extend the classical Feigin homomorphisms along the embedding of the quantum group into said quantum shuffle algebra. In a recent work of Berenstein and the author, analogous extensions of Feigin homomorphisms from the dual Hall–Ringel algebra of a valued quiver to quantum polynomial algebras were defined. To relate these constructions, we establish a homomorphism, dubbed the quantum shuffle character, from the dual Hall–Ringel algebra to the quantum shuffle algebra which relates the generalized Feigin homomorphisms. These constructions can be compactly described by a commuting tetrahedron of maps beginning with the quantum group and terminating in a quantum polynomial algebra. The second goal in this project is to better understand the dual canonical basis conjecture for skew-symmetrizable quantum cluster algebras. In the symmetrizable types it is known that dual canonical basis elements need not have positive multiplicative structure constants, while this is still suspected to hold for skew-symmetrizable quantum cluster algebras. We propose an alternate conjecture for the symmetrizable types: the cluster monomials should correspond to irreducible characters of a KLR algebra. Indeed, the main conjecture of this note would establish this “KLR conjecture” for acyclic skew-symmetrizable quantum cluster algebras: that is, we conjecture that the images of rigid representations under the quantum shuffle character give irreducible characters for KLR algebras. We sketch a proof in the symmetric case giving an alternative to the proof of Kimura–Qin that all non-initial cluster variables in an acyclic skew-symmetric quantum cluster algebra are contained in the dual canonical basis. With these results in mind we interpret the cluster mutations directly in terms of the representation theory of the KLR algebra.
Ключевые слова: cluster algebra; Hall algebra; quantum group; quiver Hecke algebra; KLR algebra; dual canonical basis; Feigin homomorphism; categorification.
Поступила: 11 сентября 2014 г.; в окончательном варианте 3 марта 2015 г.; опубликована 19 марта 2015 г.
Реферативные базы данных:
Тип публикации: Статья
Язык публикации: английский
Образец цитирования: Dylan Rupel, “The Feigin Tetrahedron”, SIGMA, 11 (2015), 024, 30 pp.
Цитирование в формате AMSBIB
\RBibitem{Rup15}
\by Dylan~Rupel
\paper The Feigin Tetrahedron
\jour SIGMA
\yr 2015
\vol 11
\papernumber 024
\totalpages 30
\mathnet{http://mi.mathnet.ru/sigma1005}
\crossref{https://doi.org/10.3842/SIGMA.2015.024}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3324982}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000351685200001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84925651621}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/sigma1005
  • https://www.mathnet.ru/rus/sigma/v11/p24
  • Эта публикация цитируется в следующих 6 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024