|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
Non-Schlesinger Isomonodromic Deformations of Fuchsian Systems and Middle Convolution
Yulia Bibiloa, Galina Filipukb a Department of Theory of Information Transmission and Control, Institute for Information Transmission Problems, Russian Academy of Sciences, Bolshoy Karetny per. 19, Moscow, 127994, Russia
b Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2, Warsaw, 02-097, Poland
Аннотация:
The paper is devoted to non-Schlesinger isomonodromic deformations for resonant Fuchsian systems. There are very few explicit examples of such deformations in the literature. In this paper we construct a new example of the non-Schlesinger isomonodromic deformation for a resonant Fuchsian system of order 5 by using middle convolution for a resonant Fuchsian system of order 2. Moreover, it is known that middle convolution is an operation that preserves Schlesinger's deformation equations for non-resonant Fuchsian systems. In this paper we show that Bolibruch's non-Schlesinger deformations of resonant Fuchsian systems are, in general, not preserved by middle convolution.
Ключевые слова:
Middle convolution; isomonodromic deformation; non-Schlesinger isomonodromic deformation.
Поступила: 20 ноября 2014 г.; в окончательном варианте 4 марта 2015 г.; опубликована 13 марта 2015 г.
Образец цитирования:
Yulia Bibilo, Galina Filipuk, “Non-Schlesinger Isomonodromic Deformations of Fuchsian Systems and Middle Convolution”, SIGMA, 11 (2015), 023, 14 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1004 https://www.mathnet.ru/rus/sigma/v11/p23
|
|