|
Эта публикация цитируется в 37 научных статьях (всего в 37 статьях)
On the hidden shifted power problem
J. Bourgaina, M. Z. Garaevb, S. V. Konyaginc, I. E. Shparlinskid a Institute for Advanced Study, Princeton, NJ 08540, United States
b Centro de Ciencias Matemáticas, Universidad Nacional Autónoma de México, C.P. 58089, Morelia, Michoacán, Mexico
c Steklov Mathematical Institute, Moscow, 119991, Russian Federation
d Department of Computing, Macquarie University, Sydney, NSW 2109, Australia
Аннотация:
We consider the problem of recovering a hidden element $s$ of a finite field $\mathbb{F}_q$ of $q$ elements from queries to an oracle that for a given $x \in \mathbb{F}_q$ returns $(x+s)^e$ for a given divisor $e \mid q-1$. We use some techniques from additive combinatorics and analytic number theory that lead to more efficient algorithms than the naive interpolation algorithm; for example, they use substantially fewer queries to the oracle.
Поступила в редакцию: 05.10.2011 Принята в печать: 24.08.2012
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/siamc1
|
Статистика просмотров: |
Страница аннотации: | 170 |
|