|
Дискретная математика и математическая кибернетика
Partial covering arrays for data hiding and quantization
Vladimir N. Potapov Sobolev Institute of Mathematics,
pr. Koptyuga, 4,
630090, Novosibirsk, Russia
Аннотация:
We consider the problem of finding a set (partial covering array) $S$ of vertices of the Boolean $n$-cube having cardinality $2^{n-k}$ and intersecting with maximum number of $k$-dimensional faces. We prove that the ratio between the numbers of the $k$-faces containing elements of $S$ to $k$-faces is less than $1-{\frac{1+o(1)}{2^{ k+1}}}$ as $n\rightarrow\infty$. The solution of the problem in the class of linear codes is found. Connections between this problem, cryptography and an efficiency of quantization are discussed.
Ключевые слова:
linear code, covering array, data hiding, wiretap channel, quantization, wet paper stegoscheme.
Поступила 5 августа 2017 г., опубликована 11 мая 2018 г.
Образец цитирования:
Vladimir N. Potapov, “Partial covering arrays for data hiding and quantization”, Сиб. электрон. матем. изв., 15 (2018), 561–569
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/semr936 https://www.mathnet.ru/rus/semr/v15/p561
|
Статистика просмотров: |
Страница аннотации: | 185 | PDF полного текста: | 32 | Список литературы: | 24 |
|