|
Математическая логика, алгебра и теория чисел
Rota–Baxter operators of weight zero on simple Jordan algebra of Clifford type
V. Yu. Gubarevab a Sobolev Institute of Mathematics,
pr. Koptyuga, 4,
630090, Novosibirsk, Russia
b Novosibirsk State University,
Pirogova str., 2,
630090, Novosibirsk, Russia
Аннотация:
It is proved that every Rota–Baxter operator of weight zero
on the Jordan algebra of a nondegenerate bilinear symmetric form
is nilpotent of index less or equal three.
We found exact value of nilpotency index of
Rota–Baxter operators of weight zero on simple
Jordan algebra of Clifford type over the fields
$\mathbb{R}$, $\mathbb{C}$, and $\mathbb{Z}_p$.
For $\mathbb{Z}_p$, we essentially use the results
from number theory concerned quadratic residues and
Chevalley–Warning theorem.
Ключевые слова:
Rota–Baxter operator, Jordan algebra of Clifford type, quadratic residue, Chevalley–Warning theorem.
Поступила 6 октября 2017 г., опубликована 29 декабря 2017 г.
Образец цитирования:
V. Yu. Gubarev, “Rota–Baxter operators of weight zero on simple Jordan algebra of Clifford type”, Сиб. электрон. матем. изв., 14 (2017), 1524–1532
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/semr890 https://www.mathnet.ru/rus/semr/v14/p1524
|
|