|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
Дифференциальные уравнения, динамические системы и оптимальное управление
Existence of entropy measure-valued solutions for forward-backward $p$-parabolic equations
S. N. Antontsevabc, I. V. Kuznetsovba a Lavrentyev Institute of Hydrodynamics,
Siberian Division of the Russian Academy of Sciences,
pr. Acad. Lavrentyeva 15,
630090, Novosibirsk, Russia
b Novosibirsk State University,
Pirogova st., 2,
630090, Novosibirsk, Russia
c CMAF-CIO, University of Lisbon, 1749-016 Lisbon, Portugal
Аннотация:
In this paper we have proved that the Dirichlet problem for the forward-backward $p$-parabolic equation has an entropy measure-valued solution which has been obtained as a singular limit of weak solutions and their gradients to the Dirichlet problem for the elliptic equation containing the anisotropic $(p,2)$-Laplace operator. In order to guarantee the existence of entropy measure-valued solutions, the initial and final conditions should be formulated in the form of integral inequalities. This means that an entropy measure-valued solution can deviate from both initial and final data on the boundary. Moreover, a gradient Young measure appears in the representation of an entropy measure-valued solution. The uniqueness of entropy measure-valued solutions is still an open question.
Ключевые слова:
anisotropic Laplace operator, entropy measure-valued solution, forward-backward parabolic equation, gradient Young measure.
Поступила 28 мая 2017 г., опубликована 16 августа 2017 г.
Образец цитирования:
S. N. Antontsev, I. V. Kuznetsov, “Existence of entropy measure-valued solutions for forward-backward $p$-parabolic equations”, Сиб. электрон. матем. изв., 14 (2017), 774–793
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/semr823 https://www.mathnet.ru/rus/semr/v14/p774
|
|