|
Эта публикация цитируется в 4 научных статьях (всего в 5 статьях)
Математическая логика, алгебра и теория чисел
Some simple groups which are determined by their character degree graphs
S. Heydari, N. Ahanjideh Department of pure Mathematics, Faculty of Mathematical Sciences,
Shahre-kord University, P. O. Box 115, Shahre-kord, Iran
Аннотация:
Let $G$ be a finite group, and let $\rho(G)$ be the set of prime divisors of the irreducible character degrees of $G$. The character degree graph of $G$, denoted by $\Delta(G)$, is a graph with vertex set $\rho(G)$ and two vertices $a$ and $b$ are adjacent in $\Delta(G)$, if $ab$ divides some irreducible character degree of $G$. In this paper, we are going to show that some simple groups are uniquely determined by their orders and character degree graphs. As a consequence of this paper, we conclude that $M_{12}$ is not determined uniquely by its order and its character degree graph.
Ключевые слова:
character degree, minimal normal subgroup, Sylow subgroup.
Поступила 21 сентября 2016 г., опубликована 23 декабря 2016 г.
Образец цитирования:
S. Heydari, N. Ahanjideh, “Some simple groups which are determined by their character degree graphs”, Сиб. электрон. матем. изв., 13 (2016), 1290–1299
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/semr751 https://www.mathnet.ru/rus/semr/v13/p1290
|
Статистика просмотров: |
Страница аннотации: | 212 | PDF полного текста: | 58 | Список литературы: | 44 |
|