|
Математическая логика, алгебра и теория чисел
Embeddings of differential groupoids into modules over commutative rings
A. V. Kravchenkoab a Sobolev Institute of Mathematics, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia
Аннотация:
As is well known, subreducts of modules over commutative rings in a given variety form a quasivariety. Stanovský proved that a differential mode is a subreduct of a module over a commutative ring if and only if it is abelian. In the present article, we consider a minimal variety of differential groupoids with nonzero multiplication and show that its abelian algebras form the least subquasivariety with nonzero multiplication.
Ключевые слова:
differential groupoid, module over a commutative ring, term conditions, quasivariety.
Поступила 11 марта 2016 г., опубликована 21 июля 2016 г.
Образец цитирования:
A. V. Kravchenko, “Embeddings of differential groupoids into modules over commutative rings”, Сиб. электрон. матем. изв., 13 (2016), 599–606
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/semr697 https://www.mathnet.ru/rus/semr/v13/p599
|
Статистика просмотров: |
Страница аннотации: | 165 | PDF полного текста: | 38 | Список литературы: | 38 |
|