|
Дискретная математика и математическая кибернетика
The number of small cycles in the Star graph
Alexey N. Medvedevabc a Sobolev Institute of Mathematics, 4, Koptyug av., 630090, Novosibirsk, Russia
b MTA Rényi Alfréd Institute of Mathematics, Reáltanoda ut. 13-15., Budapest, 1053, Hungary
c Central European University, Nador ut. 9, Budapest, 1051, Hungary
Аннотация:
The Star graph is the Cayley graph on the symmetric group $Sym_n$ generated by the set of transpositions $\{(1\,i) \in Sym_n: 2 \leqslant i \leqslant n\}$. This graph is bipartite and does not contain odd cycles but contains all even cycles with a sole exception of $4$-cycles. We denote as $(\pi,id)$-cycles the cycles constructed from two shortest paths between a given vertex $\pi$ and the identity $id$. In this paper we derive the exact number of $(\pi,id)$-cycles for particular structures of the vertex $\pi$. We use these results to obtain the total number of $10$-cycles passing through any given vertex in the Star graph.
Ключевые слова:
Cayley graphs; Star graph; cycle embedding; number of cycles.
Поступила 21 января 2016 г., опубликована 29 апреля 2016 г.
Образец цитирования:
Alexey N. Medvedev, “The number of small cycles in the Star graph”, Сиб. электрон. матем. изв., 13 (2016), 286–299
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/semr672 https://www.mathnet.ru/rus/semr/v13/p286
|
Статистика просмотров: |
Страница аннотации: | 218 | PDF полного текста: | 64 | Список литературы: | 32 |
|