|
Геометрия и топология
On axisymmetric Helfrich surfaces
S. M. Cherosovaa, D. A. Nogovitsyna, E. I. Shamaevab a Ammosov Northeastern Federal University, Kulakovskogo str., 48
677000, Yakutsk, Russia
b Sobolev Institute of Mathemathics SB RAS, Acad. Koptyug avenue, 4, 630090, Novosibirsk, Russia
Аннотация:
In this paper we study axisymmetric
Helfrich surfaces. We prove the convergence of the formal power
series solution of the Euler–Lagrange equation for the
Helfrich functional in a neighborhood of its singular point. We
also prove the following inequality
$$
\lambda_v R^3+ (c^2+2\lambda_a)R^2-2cR+1\geqslant 0,
$$
for a smooth axisymmetric Helfrich surfaces, that homeomorphic
to a sphere, where $c$ is the spontaneous curvature of the
surface, $\lambda_a$ and $\lambda_v$ are Lagrange multipliers,
$R$ is the maximum distance between the axis of rotational
symmetry and surface.
Ключевые слова:
Helfrich spheres of rotation, Delaunay surface of rotation, Willmore surface of rotation, Lobachevsky hyperbolic plane.
Поступила 23 октября 2015 г., опубликована 24 ноября 2015 г.
Образец цитирования:
S. M. Cherosova, D. A. Nogovitsyn, E. I. Shamaev, “On axisymmetric Helfrich surfaces”, Сиб. электрон. матем. изв., 12 (2015), 854–861
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/semr634 https://www.mathnet.ru/rus/semr/v12/p854
|
|