|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
Дискретная математика и математическая кибернетика
Stochastic process reduction for performance evaluation in dtsiPBC
I. V. Tarasyuka, H. Maciàb, V. Valerob a A.P. Ershov Institute of Informatics Systems, Siberian Branch of the Russian Academy of Sciences, 6, Acad. Lavrentiev pr.,
630090 Novosibirsk, Russian Federation
b High School of Informatics Engineering, University of Castilla-La Mancha, Avda. de España s/n, 02071 Albacete, Spain
Аннотация:
Petri box calculus (PBC) is a well-known algebra of concurrent processes with a Petri net semantics. In the paper, we consider an extension of PBC with discrete stochastic time and immediate multiactions, which is referred to as discrete time stochastic and immediate PBC (dtsiPBC). Performance analysis methods for concurrent and distributed systems with random time delays are investigated in the framework of the new stochastic process algebra. It is demonstrated that the performance evaluation is possible not only via the underlying semi-Markov chains of the algebraic process expressions but also by exploring the reduced discrete time Markov chains, obtained from the semi-Markov chains by eliminating their states with zero residence time (called vanishing states). The latter approach simplifies performance analysis of large systems due to abstraction from many instantaneous activities, such as those used to specify logical conditions, probabilistic branching, as well as urgent or internal (unobservable) work.
Ключевые слова:
stochastic process algebras, stochastic Petri nets, Petri box calculus, discrete time, immediate multiactions, operational semantics, transition systems, performance analysis, Markov chains, vanishing states, reduction.
Поступила 29 января 2015 г., опубликована 14 сентября 2015 г.
Образец цитирования:
I. V. Tarasyuk, H. Macià, V. Valero, “Stochastic process reduction for performance evaluation in dtsiPBC”, Сиб. электрон. матем. изв., 12 (2015), 513–551
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/semr607 https://www.mathnet.ru/rus/semr/v12/p513
|
Статистика просмотров: |
Страница аннотации: | 138 | PDF полного текста: | 41 | Список литературы: | 35 |
|