|
Сибирские электронные математические известия, 2014, том 11, страницы 434–443
(Mi semr498)
|
|
|
|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
Математическая логика, алгебра и теория чисел
Unification Problem in Nelson's Logic $\mathbf{N4}$
S. P. Odintsova, V. V. Rybakovb a Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia
b School of Computing, Mathematics and DT, Manchester Metropolitan University, John Dalton Building, Chester Street,
Manchester M1 5GD, U.K.
Аннотация:
We consider the unification problem for formulas with coeffi-cients in the Nelson's paraconsitent logic $\mathbf{N4}$. By presence coefficients (parameters) the problem is quite not trivial and challenging (yet what makes the problem for $\mathbf{N4}$ to be peculiar is missing of replacement equivalents rule in this logic). It is shown that the unification problem in $\mathbf{N4}$ is decidable for $\sim$-free formulas. We also show that there is an algorithm which computes finite complete sets of unifiers (so to say — all best unifiers) for unifiable in $\mathbf{N4}$ $\sim$-free formulas (i.e. any unifier is equivalent to a substitutional example of a unifier from this complete set). Though the unification problem for all formulas (not $\sim$-free formulas) remains open.
Ключевые слова:
Nelson's logic, strong negation, unification, complete sets of unifiers, decidability, Vorob'ev translation.
Поступила 16 января 2014 г., опубликована 3 июня 2014 г.
Образец цитирования:
S. P. Odintsov, V. V. Rybakov, “Unification Problem in Nelson's Logic $\mathbf{N4}$”, Сиб. электрон. матем. изв., 11 (2014), 434–443
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/semr498 https://www.mathnet.ru/rus/semr/v11/p434
|
Статистика просмотров: |
Страница аннотации: | 220 | PDF полного текста: | 76 | Список литературы: | 87 |
|