|
Сибирские электронные математические известия, 2005, том 2, страницы 192–193
(Mi semr40)
|
|
|
|
Краткие сообщения
An algorithm of finding planar surfaces in three-manifolds
E. A. Sbrodova Chelyabinsk State University
Аннотация:
This paper is devoted to the question: does there exist an algorithm to decide whether or not a given $3$-manifold contains a proper essential planar surface? By a planar surface we mean a punctured disc.
There is an algorithm, due to W. Jaco, to decide whether a $3$-manifold admits a proper essential disc, i.e., whether it is boundary reducible. A close result, an algorithm allow us to say whether a manifold contains a proper essential disc with a given boundary, was obtained by W. Haken in 60-th. In 1998 W. Jaco, H. Rubinstein and E. Sedgwick described an algorithm to decide whether or not a given linkmanifold contains a proper essential planar surface (a link-manifold is a compact orientable $3$-manifold whose boundary consists of tori) [1]. We generalize this result to manifolds with arbitrary boundaries.
A slope on the boundary of a $3$-manifold $M$ is the isotopy class of a finite set of disjoint simple closed curves $\{\alpha_1,\dots,\alpha_n\}$ in $\partial M$ which are nontrivial and pairwise nonparallel. We say that the boundary of a proper surface $F$ has a slope $\alpha=\{\alpha_1,\dots,\alpha_n\}$ if the boundary components of $F$ are each parallel to one of the curves $\alpha_1,\dots,\alpha_n$.
Поступила 15 октября 2005 г., опубликована 17 октября 2005 г.
Образец цитирования:
E. A. Sbrodova, “An algorithm of finding planar surfaces in three-manifolds”, Сиб. электрон. матем. изв., 2 (2005), 192–193
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/semr40 https://www.mathnet.ru/rus/semr/v2/p192
|
Статистика просмотров: |
Страница аннотации: | 212 | PDF полного текста: | 49 | Список литературы: | 36 |
|