|
Сибирские электронные математические известия, 2012, том 9, страницы 156–160
(Mi semr345)
|
|
|
|
Дискретная математика и математическая кибернетика
On a question of Dirac on critical and vertex critical graphs
Tommy Jensen, Mark Siggers College of Natural Sciences,
Kyungpook National University,
Daegu 702-701, South Korea
Аннотация:
We give a construction which for any $N$ provides a graph on $n>N$ vertices which is vertex-critical with respect to being $4$-chromatic, has at least $cn^2$ edges that are non-critical (i.e., the removal of any one does not change the chromaticity) and has at most $Cn$ critical edges for some fixed positive constants $c$ and $C$. Thus for any $\varepsilon>0$ we get $4$-vertex-critical graphs in which less than an $\varepsilon$-proportion of the edges are non-critical.
Ключевые слова:
critical graph, vertex-criticality, critical edge, Dirac problem.
Поступила 3 февраля 2012 г., опубликована 21 февраля 2012 г.
Образец цитирования:
Tommy Jensen, Mark Siggers, “On a question of Dirac on critical and vertex critical graphs”, Сиб. электрон. матем. изв., 9 (2012), 156–160
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/semr345 https://www.mathnet.ru/rus/semr/v9/p156
|
|