|
Сибирские электронные математические известия, 2011, том 8, страницы 127–158
(Mi semr311)
|
|
|
|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
Small perturbations of two-phase thermofluid in pores: linearization procedure and equations of isothermal microstructure
S. A. Sazhenkova, E. V. Sazhenkovab a Lavrentyev Institute for Hydrodynamics, Siberian Division of the Russian Academy of Sciences, pr. Acad. Lavrentyeva, 15, 630090, Novosibirsk, Russia
b Novosibirsk State University of Economics and Management, Institute for Applied Informatics, Kamenskaya st., 56, 630099, Novosibirsk, Russia
Аннотация:
We consider the most general dynamical model describing the joint motion of a heat-conductive elastic porous body and a two-phase heat-conductive Newtonian viscous compressible fluid. We assume that the fluid fills in the whole porous space. Since the fluid in pores and the solid composing the pore space are distinguished and at the same time we think of pores that they have very small diameters but their aggregate capacity is significant with the respect to the entire fluid-solid bulk, the considered model corresponds to microstructure. In the present article the linearization procedure is fulfilled on a natural rest state by means of the classical formalism. On the base of the obtained linearized model, a simplified isothermal formulation is set up and the existence and uniqueness theory is built for it. The proofs are based on the classical methods in the theory of evolutionary partial differential equations.
Ключевые слова:
elastic solid, two-phase compressible viscous fluid, Rakhmatulin's scheme, linearization, existence and uniqueness theory, generalized solutions.
Поступила 1 ноября 2010 г., опубликована 11 июля 2011 г.
Образец цитирования:
S. A. Sazhenkov, E. V. Sazhenkova, “Small perturbations of two-phase thermofluid in pores: linearization procedure and equations of isothermal microstructure”, Сиб. электрон. матем. изв., 8 (2011), 127–158
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/semr311 https://www.mathnet.ru/rus/semr/v8/p127
|
Статистика просмотров: |
Страница аннотации: | 197 | PDF полного текста: | 62 | Список литературы: | 29 |
|