|
Сибирские электронные математические известия, 2011, том 8, страницы 54–61
(Mi semr305)
|
|
|
|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
Статьи
On the structure of picard group for moebius ladder
I. A. Mednykhab, M. A. Zindinovaab a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
b Novosibirsk State University
Аннотация:
The notion of the Picard group of a graph (also known as Jacobian group, sandpile group, critical group) was independently given by many authors. This is a very important algebraic invariant of a finite
graph. In particular, the order of the Picard group coinsides with the number of spanning trees for a graph. The latter number is known for the simplest families of graphs such as Wheel, Fan, Prism, Ladder and
Moebius ladder graphs. At the same time the structure of the Picard group is known only in several cases. The aim of this paper is to determine the structure of the Picard group of the Moebius ladder graphs.
Ключевые слова:
Graph, Picard group, Abelian group, Chebyshev polynomial.
Поступила 11 января 2011 г., опубликована 2 марта 2011 г.
Образец цитирования:
I. A. Mednykh, M. A. Zindinova, “On the structure of picard group for moebius ladder”, Сиб. электрон. матем. изв., 8 (2011), 54–61
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/semr305 https://www.mathnet.ru/rus/semr/v8/p54
|
Статистика просмотров: |
Страница аннотации: | 342 | PDF полного текста: | 140 | Список литературы: | 50 |
|