|
Сибирские электронные математические известия, 2011, том 8, страницы 39–47
(Mi semr298)
|
|
|
|
Статьи
On $s$-semipermutable and weakly $s$-permutable subgroups
Ch. Li School of Mathematical Science, Xuzhou Normal University, Xuzhou, China
Аннотация:
Let $H$ be a subgroup of a finite group $G$. $H$ is said to be $s$-semipermutable in $G$ if
$HG_{p}=G_{p}H$ for any Sylow $p$-subgroup $G_{p}$ of $G$ with $(p,|H|)=1$; $H$ is called weakly $s$-permutable in $G$ if there exists a subnormal subgroup $T$ of $G$ such that $G=HT$ and $H\cap T\leq
H_{sG}$, where $H_{sG}$ is the subgroup of $H$ generated by all those subgroups of $H$ which are $s$-permutable in $G$. We fix in every non-cyclic Sylow subgroup $P$ of $G$ a subgroup $D$ with
$1<|D|<|P|$ and study the structure of $G$ under the assumption that every subgroup $H$ of $P$ with
$|H|=|D|$ is either $s$-semipermutable or weakly $s$-permutable in $G$. Some recent results are generalized and unified.
Ключевые слова:
$s$-semipermutable, weakly $s$-permutable, $p$-nilpotent, the generalized Fitting subgroup.
Поступила 12 июля 2010 г., опубликована 24 января 2011 г.
Образец цитирования:
Ch. Li, “On $s$-semipermutable and weakly $s$-permutable subgroups”, Сиб. электрон. матем. изв., 8 (2011), 39–47
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/semr298 https://www.mathnet.ru/rus/semr/v8/p39
|
|