|
Сибирские электронные математические известия, 2006, том 3, страницы 393–401
(Mi semr216)
|
|
|
|
Статьи
On uniformly continuous operators and some weight-hyperbolic function Banach algebra
Ana L. Barrenechea, Carlos C. Peña UNCentro – FCExactas – NuCoMPA, Dpto. de Matemáticas, Argentina
Аннотация:
We consider an abelian non-unitary Banach algebra $\mathfrak{A}$, ruled by an hyperbolic weight, defined on certain space of Lebesgue measurable complex valued functions on the positive axis. Since the non-convolution Banach algebra $\mathfrak{A}$ has its own interest by its applications to the representation theory of some Lie groups, we search on various of its properties. As a Banach space, $\mathfrak{A}$ does not have the
Radon–Nikodým property. So, it could be exist not representable linear bounded operators on $\mathfrak{A}$ (cf. [6]). However, we prove that the class of locally absolutely continuous bounded operators are representable and we determine their kernels.
Поступила 19 декабря 2005 г., опубликована 18 декабря 2006 г.
Образец цитирования:
Ana L. Barrenechea, Carlos C. Peña, “On uniformly continuous operators and some weight-hyperbolic function Banach algebra”, Сиб. электрон. матем. изв., 3 (2006), 393–401
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/semr216 https://www.mathnet.ru/rus/semr/v3/p393
|
|