Сибирские электронные математические известия
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Сиб. электрон. матем. изв.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Сибирские электронные математические известия, 2007, том 4, страницы 504–546 (Mi semr170)  

Статьи

Sheaves and $\mathfrak{Ta}$-bicompactifications of mappings

V. M. Ulyanov

Independent University of Russian Academy of Education, Novomoskovsk's Branch, Novomoskovsk, Russia
Список литературы:
Аннотация: The paper is devoted to an investigation of relations between bicompactifications of mappings and sheaves of algebras. Bicompactifications of mappings are a generalization of compactifications of topological spaces, and sheaves of algebras take place of algebras of continuous bounded functions on topological spaces.
The first section contains a historical review of main constructions and notions used in the paper as well as a short introduction to the theory of bicompactifications of mappings. In particular, we state here basic definitions and recall some statements about bicompactifications of mappings that were obtained earlier.
In the second section some new topological properties of the fan product and the inverse limit are proved.
The third section contains important constructions which are used for an upbuilding of bicompactifications of mappings. Several new properties of these constructions are proved.
The fourth section is devoted to a definition and an investigation of algebras of functions on mappings. In this section a natural topology on these algebras is defined; the class of globally completely regular mappings is singled out for which such algebras play a role similar to that of algebras of continuous bounded functions on completely regular spaces; a functor from the category of mappings to the category of perfect globally completely regular mappings is constructed which preserves algebras of continuous “bounded” functions on mappings; a correspondence between “mappings” of mappings and homomorphisms of their algebras is investigated.
In the fifth section sheaves of algebras connected with mappings are defined and investigated.
The sixth section contains a proof of the main result of the paper: there exists a one-to-one correspondence preserving the order between the set of all $\mathfrak{Ta}$-bicompactifications of a given mapping and the set of all sheaves of a special kind.
In the seventh section we define maximal closed ideals of sheaves of algebras; relations between these ideals and points of $\mathfrak{Ta}$ of a given mapping are investigated.
Поступила 24 сентября 2006 г., опубликована 20 декабря 2007 г.
Реферативные базы данных:
Тип публикации: Статья
УДК: 513.83
MSC: 54C25, 54C10, 54C35
Язык публикации: английский
Образец цитирования: V. M. Ulyanov, “Sheaves and $\mathfrak{Ta}$-bicompactifications of mappings”, Сиб. электрон. матем. изв., 4 (2007), 504–546
Цитирование в формате AMSBIB
\RBibitem{Uly07}
\by V.~M.~Ulyanov
\paper Sheaves and $\mathfrak{Ta}$-bicompactifications of mappings
\jour Сиб. электрон. матем. изв.
\yr 2007
\vol 4
\pages 504--546
\mathnet{http://mi.mathnet.ru/semr170}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2465439}
\zmath{https://zbmath.org/?q=an:1132.54316}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/semr170
  • https://www.mathnet.ru/rus/semr/v4/p504
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Статистика просмотров:
    Страница аннотации:326
    PDF полного текста:99
    Список литературы:81
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024