|
Математическая логика, алгебра и теория чисел
The Tarski–Lindenbaum algebra of the class of prime models with infinite algorithmic dimensions having omega-stable theories
M. G. Peretyat'kin Institute of Mathematics and Mathematical Modeling, Shevchenko 28, 050010, Almaty, Kazakhstan
Аннотация:
We study the class of all prime strongly constructivizable models of infinite algorithmic dimensions having $\omega$-stable theories in a fixed finite rich signature. It is proved that the Tarski-Lindenbaum algebra of this class considered together with a Gödel numbering of the sentences is a Boolean $\Sigma^1_1$-algebra whose computable ultrafilters form a dense subset in the set of all ultrafilters; moreover, this algebra is universal with respect to the class of Boolean $\Sigma^1_1$-algebras. This gives a characterization to the Tarski–Lindenbaum algebra of the class of all prime strongly constructivizable models of infinite algorithmic dimensions having $\omega$-stable theories.
Ключевые слова:
Tarski–Lindenbaum algebra, strongly constructive model, computable isomorphism, semantic class of models, $\omega$-stable theory, prime model.
Поступила 14 декабря 2023 г., опубликована 8 апреля 2024 г.
Образец цитирования:
M. G. Peretyat'kin, “The Tarski–Lindenbaum algebra of the class of prime models with infinite algorithmic dimensions having omega-stable theories”, Сиб. электрон. матем. изв., 21:1 (2024), 277–292
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/semr1684 https://www.mathnet.ru/rus/semr/v21/i1/p277
|
|