|
Математическая логика, алгебра и теория чисел
Бинарно $(-1,1)$-бимодули над полупростыми алгебрами
С. В. Пчелинцев Department of Mathematics, Finance University under the Government of the Russian Federation, Leningradsky prospect 49, 125993, Moscow, Russia
Аннотация:
It is proved that the irreducible binary $(-1,1)$-bimodule over simple algebra with a unit is alternative. A criterion for alterna-tiveness (hence, complete reducibility) of unital binary $(-1,1)$-bimodule over a semisimple finite-dimensional algebra is obtained. It is proved that every unital strictly $(-1,1)$-bimodule over a finite-dimensional semisimple associative and commutative algebra is associative. The coordinateization theorem is proved for the matrix algebra ${\rm M}_n(\Phi)$ of order $n\geq 3$ in the class of binary $(-1,1)$-algebras. Finally, the following examples of indecomposable $(-1,1)$-bimodules are constructed: the non-unital bimodule over $1$-dimensional algebra $\Phi e$; the unital bimodule over a $2$-dimensional composition algebra $\Phi e_1 \oplus \Phi e_2$; the unital $(-1,1)$-bimodule over a quadratic extension $\Phi(\sqrt{\lambda})$ of the ground field; the unital strictly $(-1,1)$-bimodule over the field of fractionally rational functions of one variable $\Phi(t)$.
Ключевые слова:
strictly $(-1,1)$-algebra, $(-1,1)$-algebra, binary $(-1,1)$-algebra, ${\mathfrak M}$-bimodule, irreducible bimodule, complete reducibility.
Поступила 12 сентября 2023 г., опубликована 29 декабря 2023 г.
Образец цитирования:
С. В. Пчелинцев, “Бинарно $(-1,1)$-бимодули над полупростыми алгебрами”, Сиб. электрон. матем. изв., 20:2 (2023), 1605–1625
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/semr1662 https://www.mathnet.ru/rus/semr/v20/i2/p1605
|
Статистика просмотров: |
Страница аннотации: | 44 | PDF полного текста: | 22 | Список литературы: | 14 |
|