|
Математическая логика, алгебра и теория чисел
Multivalued groups and Newton polyhedron
V. G. Bardakovab, T. A. Kozlovskayac a Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia
b Novosibirsk State Agrarian University, Dobrolyubova Street, 160 Novosibirsk 630039, Russia
c Regional Scientific and Educational Mathematical Center of Tomsk State
University, 36 Lenin Ave., 634050, Tomsk, Russia
Аннотация:
On the set of complex number $\mathbb{C}$ it is possible to define $n$-valued group for any positive integer $n$. The $n$-multiplication defines a symmetric polynomial $p_n = p_n (x, y, z)$ with integer coefficients. By the theorem on symmetric polynomials, one can present $p_n$ as polynomial in elementary symmetric polynomials $e_1$, $e_2$, $e_3$. V. M. Buchstaber formulated a question on description coefficients of this polynomial. Also, he formulated the next question: How to describe the Newton polyhedron of $p_n$? In the present paper we find all coefficients of $p_n$ under monomials of the form $e_1^i e_2^j$ and prove that the Newton polyhedron of $p_n$ is a right triangle.
Ключевые слова:
multi-set, multivalued group, symmetric polynomial, Newton polyhedron.
Поступила 27 сентября 2023 г., опубликована 29 декабря 2023 г.
Образец цитирования:
V. G. Bardakov, T. A. Kozlovskaya, “Multivalued groups and Newton polyhedron”, Сиб. электрон. матем. изв., 20:2 (2023), 1590–1596
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/semr1660 https://www.mathnet.ru/rus/semr/v20/i2/p1590
|
Статистика просмотров: |
Страница аннотации: | 47 | PDF полного текста: | 17 | Список литературы: | 15 |
|