|
Вещественный, комплексный и и функциональный анализ
Multivalued quasimöbius property and bounded turning
N. V. Abrosimov, V. V. Aseev Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia
Аннотация:
The class of multivalued mappings with bounded angular distortion (BAD) property in metric spaces can be considered as a multivalued analogгу for quasimöbius mappings. We study the connections between quasimeromorphic self-mappings of $X= \bar{R}^n$ and multivalued mappings $F: X\to 2^X$ with BAD property. The main result of the paper concerns the multivalued mappings $F: D\to 2^{\bar{\mathbf C}}$ with BAD property of a domain $D\subset \bar{\mathbf{C}}$. If the image $F(x)$ of each point $x\in D$ is either a point or a continuum with bounded turning then $F$ is proved to be a single-valued quasimöbius mapping. The crucial point in the proof of this result is the local connectedness of the set $F(X)$ for the multivalued continuous mapping $F: X\to 2^Y$ with BAD property. We obtain sufficient conditions providing $F(X)$ to have local connectedness or bounded turning property in the most general case.
Ключевые слова:
multivalued quasimöbius mapping, multivalued hyperinjective mapping, Ptolemaic characteristic of tetrad, generalized angle, bounded angular distortion, local connectedness.
Поступила 1 октября 2023 г., опубликована 20 ноября 2023 г.
Образец цитирования:
N. V. Abrosimov, V. V. Aseev, “Multivalued quasimöbius property and bounded turning”, Сиб. электрон. матем. изв., 20:2 (2023), 1185–1199
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/semr1636 https://www.mathnet.ru/rus/semr/v20/i2/p1185
|
|