|
Математическая логика, алгебра и теория чисел
On profinite polyadic groups
M. Shahryaria, M. Rostamib a College of Science, Sultan Qaboos University, Muscat, Oman
b Faculty of Mathematics, Statistics, and Computer Science, University of Tabriz, Tabriz, Iran
Аннотация:
We study the structure of profinite polyadic groups and we prove that a polyadic topological group $(G, f)$ is profinite, if and only if, it is compact, Hausdorff, totally disconnected. More generally, for a pseudo-variety (or a formation) of finite groups $\mathfrak{X}$, we define the class of $\mathfrak{X}$-polyadic groups, and we show that a polyadic group $(G, f)$ is pro-$\mathfrak{X}$, if and only if, it is compact, Hausdorff, totally disconnected and for every open congruence $R$, the quotient $(G/R, f_R)$ is $\mathfrak{X}$-polyadic.
Ключевые слова:
Polyadic groups, $n$-ary groups, Profinite groups and polyadic groups, Post's cover and retract of a polyadic group.
Поступила 15 ноября 2020 г., опубликована 5 октября 2023 г.
Образец цитирования:
M. Shahryari, M. Rostami, “On profinite polyadic groups”, Сиб. электрон. матем. изв., 20:2 (2023), 814–823
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/semr1611 https://www.mathnet.ru/rus/semr/v20/i2/p814
|
Статистика просмотров: |
Страница аннотации: | 35 | PDF полного текста: | 26 | Список литературы: | 18 |
|