|
Геометрия и топология
The volume of a trirectangular hyperbolic tetrahedron
N. Abrosimovab, S. Stepanishchevc a Regional Scientific and Educational Mathematical Center, Tomsk State University, pr. Lenina, 36, 634050, Tomsk, Russia
b Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia
c Novosibirsk State University, Pirogova str., 1, 630090, Novosibirsk, Russia
Аннотация:
We consider a three-parameter family of tetrahedra in the hyperbolic space, which three edges at one vertex are pairwise orthogonal. It is convenient to determine such tetrahedra by the lengths of these edges. We obtain relatively simple formulas for them expressing the volume and the surface area. This allows us to find normalized volume and investigate its asymptotics.
Ключевые слова:
hyperbolic volume, normalized volume, Poincaré upper half-space model, hyperbolic tetrahedron, trirectangular tetrahedron, infinite cone.
Поступила 17 декабря 2022 г., опубликована 13 марта 2023 г.
Образец цитирования:
N. Abrosimov, S. Stepanishchev, “The volume of a trirectangular hyperbolic tetrahedron”, Сиб. электрон. матем. изв., 20:1 (2023), 275–284
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/semr1586 https://www.mathnet.ru/rus/semr/v20/i1/p275
|
Статистика просмотров: |
Страница аннотации: | 51 | PDF полного текста: | 11 | Список литературы: | 16 |
|