|
Вычислительная математика
Численное трехмерное моделирование задач гидродинамики на сетках, содержащих несогласованные сеточные интерфейсы
А. В. Коротковab, А. С. Козелковabc a Federal State-Funded Higher Education Institution “Nizhny Novgorod State Technical University n.a. R.E. Alexeyev”, Nizhny Novgorod, Russia
b Federal State Unitary Enterprise “Russian Federal Nuclear Center - All-Russian Research Institute of Experimental Physics” (FSUE “RFNC-VNIIEF”), Sarov, Russia
c Moscow Aviation Institute (National Research Univ.),
Moscow, Russia
Аннотация:
The paper describes a numerical method, which considers specific CFD (computational fluid dynamics) aspects of viscous incompressible flow simulations in the vicinity of interfaces between nonconforming grid fragments. An example implementation of the method is presented for the case of the finite-volume approximation of the Navier-Stokes equations. The method is based on the GGI (General Grid Interface) principle, which does not require initial grid modification and involves conservative flux interpolation. This method enables simulations of viscous incompressible flow simulations on grid models of complex-geometry structures composed of several independently constructed grid fragments, which have nonconforming grids at adjacent boundaries and can be joined together through nonconforming interfaces. The paper reports simulation results for turbulent flow in a circular tube with an abrupt reduction in diameter on a grid model composed of nonconforming unstructured grid fragments. The effect of the nonconforming interface on the accuracy of solution and the rate of convergence of iterations is demonstrated.
Ключевые слова:
hydrodynamic flows, unmatched grids, General Grid Interface, SIMPLE algorithm, unmatched grid interface.
Поступила 16 февраля 2022 г., опубликована 29 декабря 2022 г.
Образец цитирования:
А. В. Коротков, А. С. Козелков, “Численное трехмерное моделирование задач гидродинамики на сетках, содержащих несогласованные сеточные интерфейсы”, Сиб. электрон. матем. изв., 19:2 (2022), 1038–1053
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/semr1557 https://www.mathnet.ru/rus/semr/v19/i2/p1038
|
|