|
Дифференциальные уравнения, динамические системы и оптимальное управление
On the inviscid limit of stationary measures for the stochastic system of the Lorenz model for a baroclinic atmosphere
Yu. Yu. Klevtsova Siberian State University of Telecommunications and Information Science, ul. Kirova, 86, 630102, Novosibirsk, Russia
Аннотация:
The paper is concerned with a nonlinear system of partial differential equations with parameters and the random external force. This system describes the two-layer quasi-solenoidal Lorenz model for a baroclinic atmosphere on a rotating two-dimensional sphere. The stationary measures for the Markov semigroup defined by the solutions of the Cauchy problem for this problem is considered. One parameter of the system is highlighted – the coefficient of kinematic viscosity. The sufficient conditions on the random right-hand side and the other param-ters are derived for the existence of a limiting nontrivial point for any sequence of the stationary measures for this system when any sequence of the kinematic viscosity coefficients goes to zero. As it is well known, this coefficient in practice is extremely small. A number of integral properties are proved for the limiting measure. In addition, these results are obtained for one similar baroclinic atmosphere system.
Ключевые слова:
baroclinic atmosphere, Lorenz model, random external force, stationary measure, inviscid limit.
Поступила 14 ноября 2022 г., опубликована 22 декабря 2022 г.
Образец цитирования:
Yu. Yu. Klevtsova, “On the inviscid limit of stationary measures for the stochastic system of the Lorenz model for a baroclinic atmosphere”, Сиб. электрон. матем. изв., 19:2 (2022), 1015–1037
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/semr1556 https://www.mathnet.ru/rus/semr/v19/i2/p1015
|
|